

TOWARD A FLIP-CHIP BONDER DEDICATED TO DIRECT BONDING FOR PRODUCTION ENVIRONMENT

Pascal Metzger, Nicolas Raynaud: SET

A. Jouve, N. Bresson, L. Sanchez,

F. Fournel, S. Cheramy:

CEA-Leti

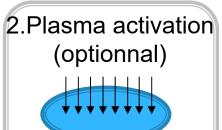
Agenda

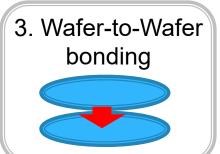
- Introduction
- Process and Tool description
 - Die-to-Wafer direct bonding process
 - Tool overview
- Bonding tool performances evaluation
 - Particle contamination
 - Alignment accuracy
 - Equipment throughput
- Application on oxide/oxide direct bonding
- Conclusion

Introduction

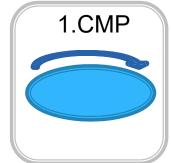
- Fine Pitch and High Throughput
 - Challenges of microbumps technology
 - Undercut
 - Microbridging
 - Assets of Direct Bonding
 - Short process time
 - Bonding (and alignment) at room temperature
 - Low force
- D2W vs W2W
 - Good yield (KGD)
 - Heterogeneity of dies (type, size, thickness...)
 - Challenge of cleanliness

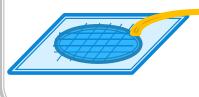
Fine pitch comparison process only - Trend


Need of Pre-applied underfill – Planarization – Cost Expensive flip-chip – Risk of microbridging and lateral overetch Cu-Cu C2W Cu-Cu W2W Area where Hybrid Bonding starts to be cost effective Copper pillar chip-to-chip Comparative data only or chip-to-wafer 1µm 10µm 25µm **Pitch**


Die-to-Wafer W2W bonding flow direct bonding process

Top & Bottom wafers





Die-to-Wafer bonding flow

Top die

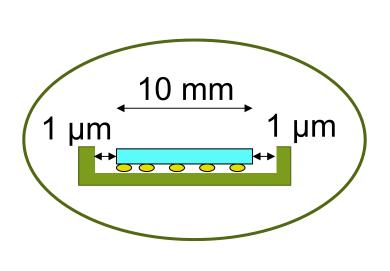
2. Top die dicing

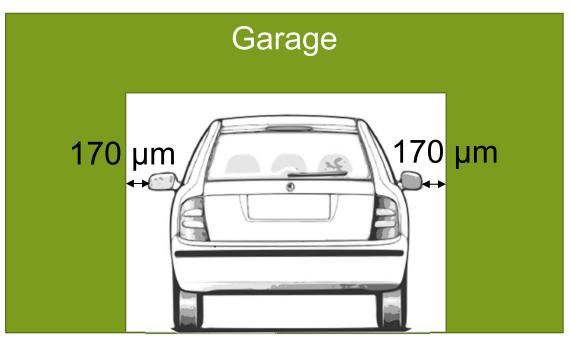
3. Holder placement

Bottom wafer

2.Plasma activation (optionnal)

5. Die-to-Wafer stacking




Two antinomic specifications | Wafer-Level Packaging Conference

Main targets

Precision: ± 1 μm

Throughput: 1000 dph

1700 mm

Tool overview

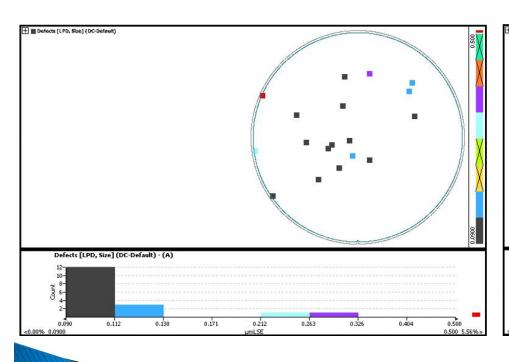
Main targets

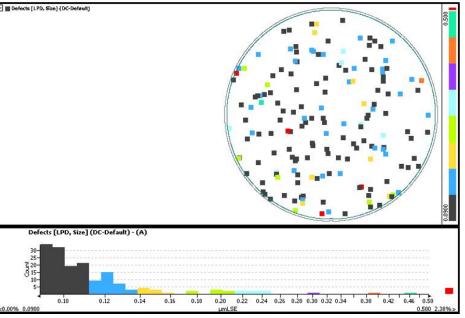
Precision: ± 1 μm

Throughput: 1000 dph

High cleanliness

Particle contamination


Method

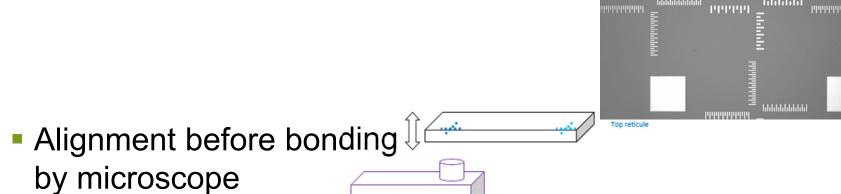

- Measurement of number of particles on wafers
- Just after cleaning
- After running tests under various conditions

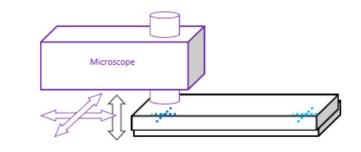
Particle contamination

- One example: Influence of Y axis
 - Theoretical throughput = 1000 dph
 - Low level of contamination = 150 added particles in 1 hour

Particle contamination

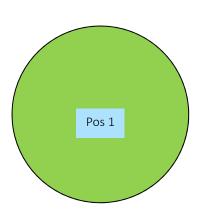
- Synthetic results table
 - Acceptable level of contamination for the process
 - Nevertheless, continuous corrective actions plan on feeder

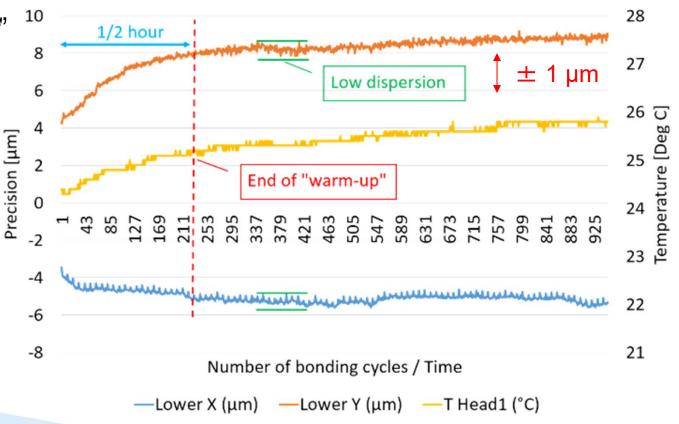

COMPARISON BETWEEN NUMBER OF PARTICLES									
Particle size	Reference			Support					
[nm]	Wafer	Cleanroom	Chuck	Holder					
Box#	1	4	7	10					
Initial (just after cleaning)									
90-500	13	43	17	19					
> 500	0	1	1	0					
After test (added particles)									
90-500	200	121	147	322					
> 500	16	5	3	67					


Alignment accuracy

Transparent reticles

Check post-bond accuracy by microscope

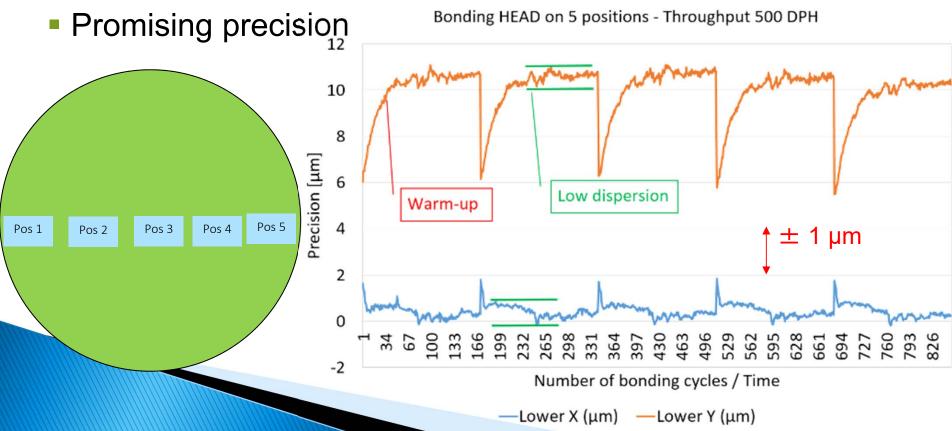




Alignment accuracy

Repeatability

- 1 position = Center of wafer
- Low dispersion
- "Warm-up time"

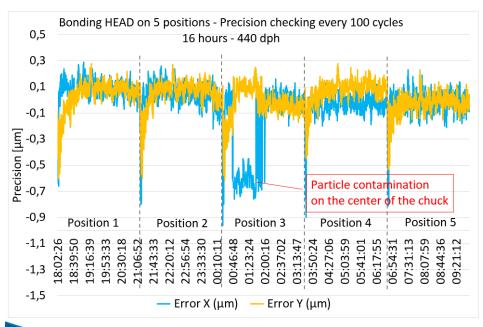


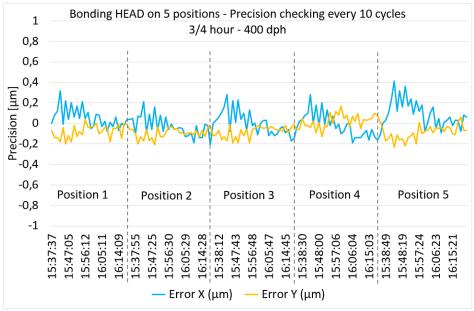
Bonding HEAD at the same position - Throughput 500 DPH

Alignment accuracy

- Repeatability
 - 5 positions = on Diameter of wafer
 - Low dispersion
 - "Warm-up time"

Equipment throughput


- Theoretical throughput = 900 dph
 - Elementary steps
 - Hidden time / in sequence

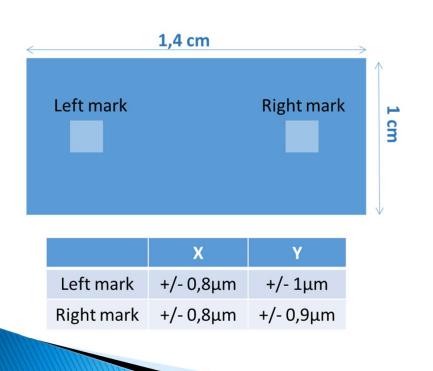

		Time in	1			
		sec	1 Cell= 0.5	5 s		
	Load Chip Magazine (Align + Pick On Magazine -> Head)	1	4s			4s
d1	Go In Alignment Position XYTheta, Z Focus + XY Optic		15	1 s		1s
Неа	Move Optic In Alignment position			1 s		
Ĭ	Ă Alignment H1			1,59	5	
	Placement H1	1,5			1,5 s	
ead2	Load Chip Magazine (Align + Pick On Magazine -> Head)	4		4s		Н
	Go In Alignment Position XYTheta, Z Focus	1	1s	1 s		1s
	Move Optic In Alignment position	0	1s			1 s
	Alignment H2	1,5	1,5s			
	Placement H2	1,5	1,	5s		
Number of Heads		2	Heads			
Cycle time for 1 Head =		8	s / die	1 cycle		
Throughput for 1 Head =		450	DPH			
Throughput for 2 Heads =		900	DPH			

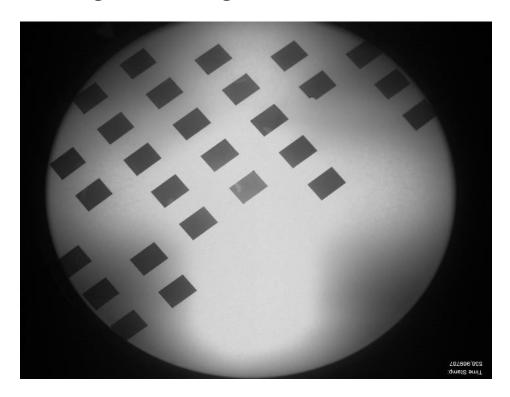
Equipment throughput

- Throughput vs Accuracy
 - Trade-off
 - Promising Throughput and Precision

Application on oxide/oxide direct bonding

Conditions


- 1 x 1,4 mm² dies with 2 verniers
- 750 nm of TEOS oxide
- CMP + dicing
- 28 dies on Ø 200 mm wafer
- 450 dph



Application on oxide/oxide direct bonding

Results

Process in line with direct bonding challenges

Conclusion

Main targets

Precision

Throughput

High cleanliness

→ Dispersion < ± 0,25 µm

→ Post-bond accuracy < ± 1 µm</p>

→ ≈ 500 dph

Acceptable level

→ Actions on progress

Future work

- Continue qualification of beta tool
- Harvest measurements on precision, throughput, cleanliness
- Qualify the process on active device, full morphological and electrical characterization
- Demonstration on customers components possible in 2018

Thank you for your attention!

Warms thanks to CEA-Leti team and SET team

This work was funded thanks to the French national program "Programme d'investissements d'Avenir,

IRT Nanoelec" ANR-I0-AIRT-05".

leti

MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble, France

www.leti.fr

131 impasse Barteudet, 74490 Saint-Jeoire, France

PMetzger@set-sas.fr

www.set-sas.fr