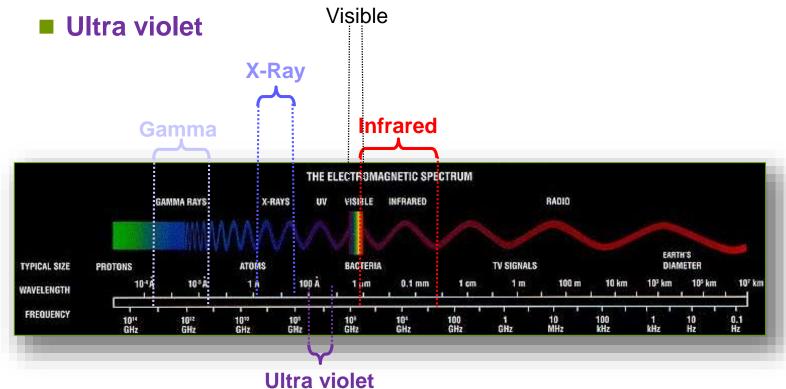


ORION CONFERENCE Moscow, May 28th, 2014

Flip-Chip Assembly for Focal Plane Array

Jean-Stéphane MOTTET
SET CORPORATION S.A.
Smart Equipment Technology, France

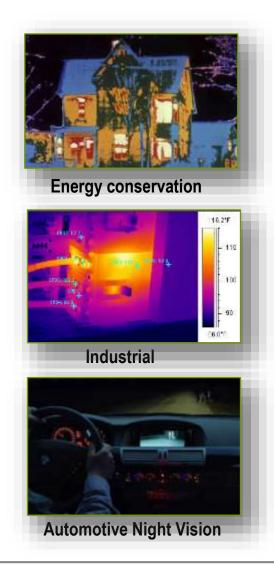
OUTLINE


Flip-Chip Assembly for Focal Plane Array

- Wave lengths
- Applications
- Materials
- Flip-chip assembly
- SET experience and solutions
- Conclusion

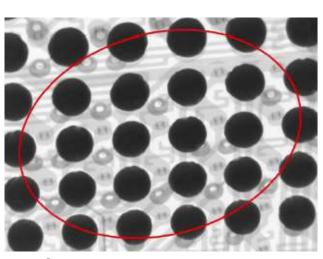
WAVE LENGHT

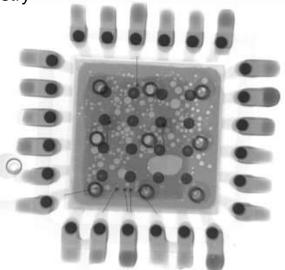
- FPA can detect different wave lengths:
 - Infrared
 - X-Ray
 - Gamma


SOME APPLICATIONS

Infrared is the radiation of heat energy, related to the temperature of objects

INFRARED APPLICATIONS

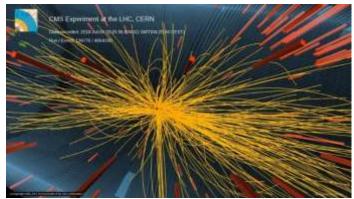

X-RAY APPLICATIONS


Medical

- Cameras for dentist/medical applications
- In the industry for assembly analysis

Industry

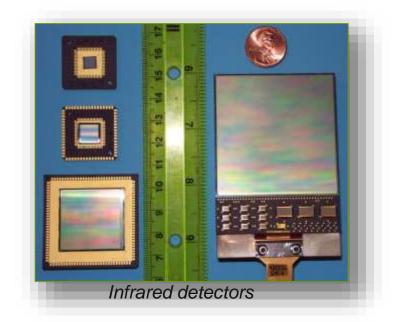
Shorted vias in a 3D package

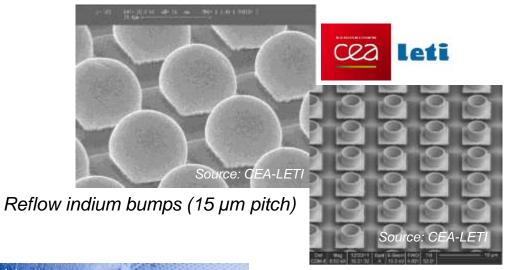


Voids on a glued BGA

GAMMA AND UV APPLICATIONS

Research

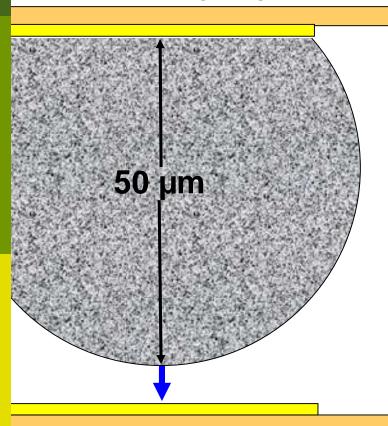

CERN (Switzerland): Higgs boson


- Research for scientist experiences
- Aerospace applications give higher inspection capacities

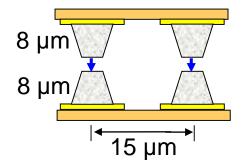
Aerospace

FPA DETECTORS AND BUMPS

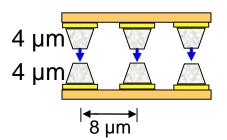
AIM


Micro

Joint shaping on indium bumps (15 µm pitch)

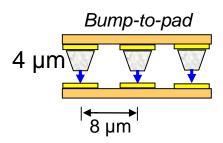

Microtubes (10 µm pitch)

FLIP-CHIP BUMPS


Conventional flip-chip solder ball

Indium-bumped FPA today

Indium-bumped FPA tomorrow



FPA CHALLENGES: SMALLER PIXEL & BUMP SIZE

2 different approaches with bump-to bump and bump-to-pad.

4 μm
4 μm
8 μm

- Very important for FPA:
 - Sub-micron alignment in XY⊖,
 - Guaranty parallelism,
 - Deal with strong oxide layer on tiny indium bumps.

FLIP-CHIP ASSEMBLY

Several techniques:

- Thermo-compression or Room temperature compression,
- Tacking + reflow in oven (under controlled atmosphere),
- In-situ reflow with chemical flux,
- In-situ reflow with mechanical scrubbing,
- In-situ reflow with formic acid vapor.

FLIP-CHIP ASSEMBLY Thermo-compression or Room temperature compression

REQUIRES:

- High accuracy for alignment and parallelism,
- High pressure/force linked to size/number of bumps,
- Sensitive and accurate force control from touch-down, up to final force,
- High stiffness of bonder to maintain alignment and parallelism accuracy when applying force,
- Good management of the thermal expansion during bonding.

Note: Oxide is broken when applying the force.

- Pros: Low temperature process (even room temperature)
- Cons: Oxide residues stay in the indium bumps

FLIP-CHIP ASSEMBLY Thermo-compression or Room temperature compression

- Current state-of-the-art is 4kx4k pixel arrays.
- 6kx6k pixel arrays are being attempted now.
- Larger arrays are coming.

FLIP-CHIP ASSEMBLY Tacking + Reflow in oven

REQUIRES:

- Chemical flux,
- High accuracy for alignment and parallelism,
- Sensitive and accurate force control from touch-down to final force,
- External oven (under controlled atmosphere).

- Pros: Low force tacking. Many assemblies are reflowed simultaneously (high throughput)
- Cons: Transfer from bonder to oven is very delicate → can affect the alignment; After reflow, flux must be cleaned → difficult process because small gap between the dies ____

FLIP-CHIP ASSEMBLY In-situ reflow with chemical flux

REQUIRES:

- Chemical flux,
- High accuracy for alignment and parallelism,
- Sensitive and accurate force control from touch-down to final force,
- Good management of the thermal expansion during reflow.

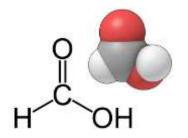
- **Pros:** Components are secured during the entire process; oxide is easily removed; quality of indium joint is very good
- Cons: Dispense of chemical flux is not a clean process → not compatible with high accuracy bonder; After reflow, flux must be cleaned → difficult process because difficult access between the dies

FLIP-CHIP ASSEMBLY In-situ reflow with mechanical scrubbing

REQUIRES:

- High accuracy for alignment and parallelism,
- Sensitive and accurate force control from touch-down to final force,
- Good management of the thermal expansion during reflow,
- Mechanical scrubbing system which respects the high alignment accuracy.

Note: Oxide is broken when applying the force.


- Pros: No post bond cleaning because no flux
- Cons: Oxide residues stay in the indium bumps; difficult to keep the alignment accuracy after scrubbing

FLIP-CHIP ASSEMBLY In-situ reflow

- Reflow of FPAs up to 1kx1k has been demonstrated using chemical flux or scrubbing to break through indium bump oxide skin,
- Mowever, larger arrays would require more scrubbing force which is not compatible with the high alignment accuracy required by tiny bumps and small pitches,
- Large arrays have also their own thermal expansion (≠ CTE between detector and ROIC), then mismatch at high temperature.

FLIP-CHIP ASSEMBLY In-situ reflow with formic acid vapor

REQUIRES:

- High accuracy for alignment and parallelism,
- Sensitive and accurate force control from touch-down to final force,
- Good management of the thermal expansion,
- Gas control (formic acid vapor).

- Pros: Oxide is easily removed; quality of indium joint is very good; no post-reflow cleaning; formic acid cleaning offers a good surface preparation to flow the underfill material
- Cons: Long desoxidation process (2 to 4 minutes)

FLIP-CHIP ASSEMBLY **Microtubes**

Technique patented by CEA-Leti REQUIRES:

- **CEA-Leti Patent to develop the microtubes before assembly,**
- High accuracy for alignment and parallelism,
- Sensitive and accurate force control from touch-down to final force.

Note: Oxide is broken when applying the force.

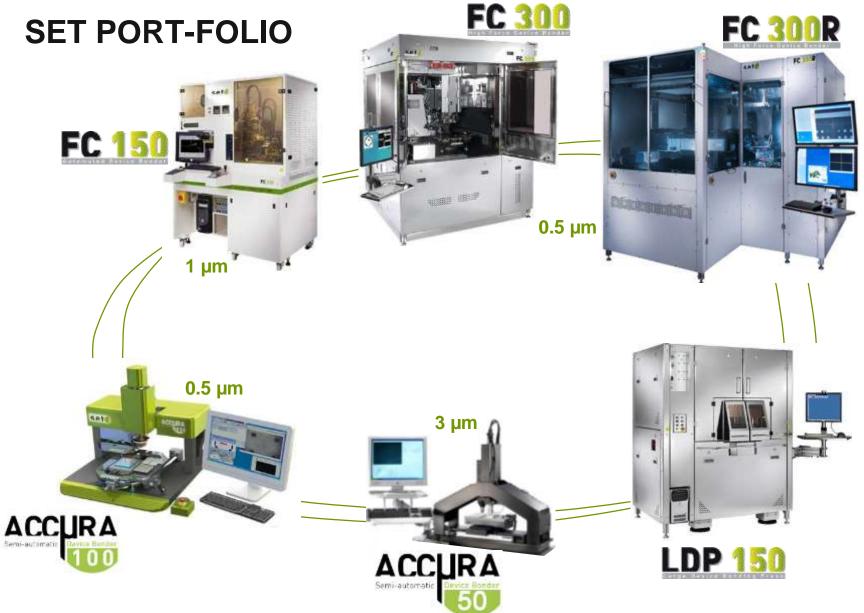
Microtubes (10 µm pitch)

- **Pros:** Low temperature process (even room temperature)
- Cons: Oxide residues stay in the interconnexion; Requires a patent

Focal Plane Array,

the SET

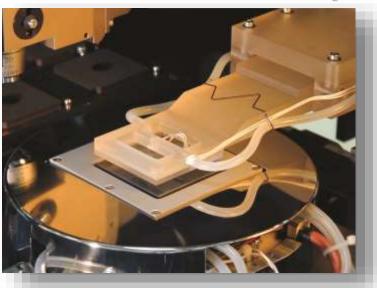
experience & solutions



SET EXPERIENCE AND SOLUTIONS

SET builds equipment since over 30 years for FPA applications. All techniques can be done on the same platforms.

- Company created in 1975 (39 years ago)
- 1982: Beginning of flip-chip with Reflow + flux techniques with CEA-Leti,
- Since the 90's: Development of high force / room temperature solutions in collaboration with American private companies,
- 2008: Introduction of formic acid vapor solution, qualified by several important names of FPA manufacturers in the world,
- 2010: CEA-Leti technique with microtubes developed on SET Bonder.

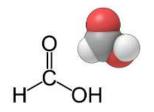


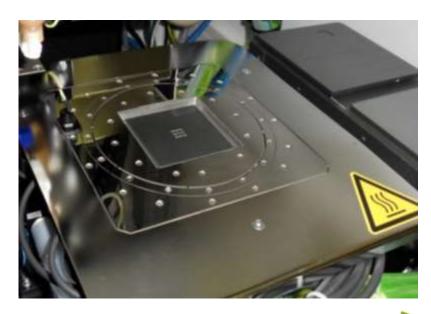
22

SET SOLUTIONS FC150 – R&D BONDER

- Bumps pitch down to 15 µm
- ± 1 µm post-bond accuracy
- Force from 25 g to 200 kg
- Temperature up to 450°C
- High Process Flexibility:
 - Thermo-compression
 - Room temperature compression
 - Reflow
 - Formic acid vapor
- Automatic mode for production

SET SOLUTIONS FC300 – R&D BONDER


- Bumps pitch down to 5 µm
- ± 0,5 µm post-bond accuracy
- Force from 100 g to 400 kg
- Temperature up to 450°C
- High Process Flexibility:
 - Thermo-compression
 - Room temperature compression
 - Reflow
 - Formic acid vapor
- Automatic mode for production



SET SOLUTIONS Oxide removal with formic acid vapor

- Unique concept based of semi-open chamber with injection of formic acid vapor (patented)
- All vapors are exhausted for safe use
- Formic acid vapor is built-in thanks to an evaporator
- Allows to:
 - Remove oxide on bumps,
 - Shape the bumps,
 - Generate a good adhesion indium-to-indium bumps,
 - Get a good diffusion of indium bumps on gold pads
- Additional benefit: Get better flow of underfill

SET SOLUTIONS LDP150 – LARGE DEVICE PRESS

When arrays become very large (i.e. 4kx4k), very high force is required at room temperature.

Detector and ROIC are aligned and pre-bonded on FC150 or FC300, then LDP150 applies the remaining pressure.

- XY accuracy is maintained within 3 μm
- Parallelism is maintained
- Self levelling system
- Force up to 10,000 kg
- Room temperature

CONCLUSION

- FPAs market is growing.
- The challenges are very well identified:
 - Array size is increasing → higher bonding force is required,
 - Pixel size is shrinking → higher bonding accuracy is required.
- The flip-chip method must be chosen according to the constraints of the final products/applications. The size and pitch of the bumps are key parameters.
- To get a good FPA, the flip-chip assembly must be accurate and the bonder must flexible to run all these different techniques on the same platform, from R&D to production purposes.

Thank you for your attention.

Flip-Chip Assembly for Focal Plane Array

Jean-Stéphane MOTTET

⊠ jmottet@set-sas.fr

***** +33 450 358 392

SET CORPORATION S.A.

131 impasse Barteudet - 74490 Saint-Jeoire - FRANCE www.set-sas.fr