3D-IC Integration using D2C or D2W Alignment Schemes together with Local Oxide Reduction

Gilbert Lecarpentier*, Jean-Stéphane Mottet*

SET S.A.S. (Smart Equipment Technology), 131 Impasse Barteudet, 74490 Saint Jeoire, France

Keith A. Cooper**, Michael D. Stead**

** SET North America, 343 Meadow Fox Lane, Chester, NH 03036

OUTLINE

- Introduction
- Placement schemes
- Bonding schemes
- Oxide reduction
- Summary

INTRODUCTION 3D ASSEMBLY BY CHIP OR WAFER STACKING

- Multifunction Devices (heterogeneous integration)
- Higher Packaging Miniaturization Repartitioning
 - Reduces area of individual chips (Yield improvement)
 - Reduces number of mask levels per die (Cost reduction)
 - Results in much shorter global interconnect lines for better performances

INTRODUCTION

- Established 3D Packaging Technology Stacked Dice interconnected using Wire bonding technology is widely used
 - Peripheral, Long wire bonds
 - Low-density interconnects

- 3D-Integration, Memory stack with TSV
 - Higher 3D-Interconnect density
 - Increased performanceShorter connectionLower Capacitance and Inductance

3D-TSV MARKET PREDICTIONS

(YOLE DEVELOPPEMENT)

- 3D-TSV Integration growth is very promising
- Roadmaps are shifting, forecast needs continuous updating (i.e.: Total Wafer Stack per Year - 2008 Vs 2009)

PLACEMENT AND BONDING SCHEMES

PLACEMENT

- Wafer-to-Wafer Bonding (W2W)
- Die-to-Die (D2D / C2C); Die-to-Wafer Bonding (D2W / C2W)

BONDING

- In situ Bonding
 - Thermocompression
 - In-Situ Reflow
- Sequential placement followed by gang bonding

WAFER TO WAFER (W2W) BONDING

Wafers are bonded Face-to-Face (F2F) Face-to-Back (F2B)

- High Throughput
- Chip and wafer size must be identical
- Yield Issues
- Overlay very challenging

5 Failed Stacks

DIE TO WAFER (D2W) BONDING

Dice are bonded Face-to-Face (F2F) or Face-to-Back (F2B)

- Cower Throughput
 - Single Chip Placement
- High Yield
 - Known Good Die
 - Good Overlay
- Flexibility
 - Component and wafer sizes
- Heterogeneity!
 - Different Technologies
 - Different suppliers, ...

DIE-TO-WAFER BONDING IN-SITU BONDING PROCESSES

DIE-TO-WAFER BONDING IN-SITU BONDING PROCESSES

Reflow Soldering

- T > Solder Melting Point
- CTE Mismatch makes Alignment more and more difficult as Pitch decreases and chip size increases
- Oxide protection or removal is required
- Die Warp and Smaller Bumps make Self Alignment reflow impossible

Thermo Compression Bonding

- T < Solder Melting Point</p>
- Force increases with the number of interconnections

DIE-TO-WAFER BONDING IN-SITU Vs COLLECTIVE, TEMPERATURE PROFILE

Sequential D2W bonding

- High Accuracy capability, controlled by the bonder
- Time consuming
- B Landing wafer sees several bonding T-cycles

Collective D2W bonding

- Time efficiency
- Landing wafer sees only one temperature cycle
- Accuracy depends upon preattachment method and global bonder

2-STEP APPROACH D2W BONDING THERMOCOMPRESSION – MICRO INSERTS

- Flip Chip Technique
 Using micro-tubes and solder pads
- Ultrafine Pitch < 10 µm</p>
- High Bumps Count (2000 x 2000)
- Adapted to heterogeneous imaging arrays fabrication

Demonstrator IR-FPA (Indium Bumps)

- 4-million µtubes Array @ 10µm pitch
- Aligned on 6 x 6 µm² metallic pads
- Micro-tubes height: 2.5 ~ 2.8 μm
- → Die-to-Wafer Parallelism is critical to successful insertion and bonding yield

2-STEP APPROACH D2W BONDING THERMOCOMPRESSION – MICRO INSERTS

Flux Less

- Gold plated µtubes break the native solder oxide establishing electrical contact
- No flux cleaning is required

Low Pressure

- Sharp µtubes geometry and indium solder ductility, enable insertion at low force (< 0.5 mN / connection)
- Can be handled by conventional FC Bonding equipment even for high very pin counts (i.e. > 4 millions connections)

Room Temperature

- No CTE mismatch issues
- Bonding step can be completed by solid-solid diffusion

2-STEP APPROACH D2W BONDING PHOTO PATTERNED DIELECTRIC GLUE

Cost effective processing by segmentation of 3D assembly

Die Pick and place

Collective bonding

- Die placement (SET-FC300)
 - Die is picked, aligned and Placed
 - It is secured by the Patterned Polymer
- Collective Bonding (Wafer Bonder)
 - Force and temperature are increased
 - The Polymer is reflowed
 - Critical step: die shifting might occur

2-STEP APPROACH D2W BONDING PHOTO PATTERNED DIELECTRIC GLUE

2-STEP APPROACH D2W BONDING THERMO DECOMPOSABLE ADHESIVE

- 👂 TP1-03, Dan Pascual et al.
 - Novel Die-to-Wafer Interconnect Process for 3D-IC Utilizing a Thermo-Decomposable Adhesive and Cu-Cu Thermo-Compression Bonding
- 1. TSV wafer with bond and probe pads.
- 2. Spin coat thin layer of sacrificial adhesive.
- 3. Die Bonder → Tack dice sequentially
- 4. Wafer Bonder → Apply heat/force to decompose the adhesive and bond all dice in parallel.

2-STEP APPROACH D2W BONDING DIRECT METALLIC BOND

Advantages

- Low force and room temperature attachment process
- High strength attachment at placement, no risk of shifting at collective bond step

Challenges

- Ultra clean equipment (SET-FC300, special design)
- High planarity and clean surfaces with low roughness

2-STEP APPROACH D2W BONDING **USING PICK & PLACE USING DIRECT METALLIC BOND**

Multi-partner project partially financed by the French Ministry of the Industry to develop equipment and process for direct metallic bonding

Léti will present this work in May at IMAPS / MiNaPAD (Grenoble-F)

COPPER PADS / PILLARS REMOVAL OF OXIDE PRIOR TO BONDING

Problem with Copper → OXIDATION

- Cu oxidizes at STP, oxidizes rapidly at elevated temperatures
- Metal oxides inhibit mechanical and electrical integrity
- Oxides must be prevented, removed, or circumvented

Requirements for Oxide Removal Process

- Rapid and effective
- Inert to surrounding materials
- Minimal or no residue
- EHS Compliant
- Long-lasting
- Low-cost

REMOVAL OF OXIDE PRIOR TO BONDING IN-SITU CONFINEMENT CHAMBER (D2D VERSION)

- Initially design for Die-To-Die bonding
- The Semi-Open Confinement includes two parts
 - The Chamber itself and a Contactless Cover Plate attached to the Bond Head
 - Formic Acid Vapor is injected towards the components Gap between components is programmable
 - The Exhaust Ring prevents process gas dissemination in the environment
 - External Nitrogen curtain prevents Oxygen introduction in the Confinement Chamber

REMOVAL OF OXIDE PRIOR TO BONDING IN-SITU CONFINEMENT CHAMBER (D2W VERSION)

- In the Die-to-Wafer version of the Confinement Chamber, the chamber part is attached to the bond head, the contact less cover function is performed by the wafer itself
- This experimental set up has some challenges
 - Local areas of the wafer see several gas reduction cycles
 - During wafer population, exposed areas oxidize

REMOVAL OF OXIDE PRIOR TO BONDING REDUCTION CHAMBER HARDWARE

Photos of the D2D version of the micro-chamber

View of Chuck

View of Bond Head

REMOVAL OF OXIDE PRIOR TO BONDING EXPERIMENTAL RESULTS

Cu-Cu Bonding Procedure

- Alignment at process temperature
- Nitrogen purge and Formic Acid Vapor scrub
- Bonding
 - Temperature of Bond Head and Chuck: 325 ℃/ 300 ℃
 - F = 1000 N
 - t = 900 s

Five MM2 die were successfully bonded to an M1V1 wafer

REMOVAL OF OXIDE PRIOR TO BONDING EXPERIMENTAL RESULTS

Evidence of copper transfer between MM2 and M1V structures Note: oxidation not seen on M1 lines and pads because the M1 structures are protected by a TEOS layer

SUMMARY

- High density 3D integration is moving to production
- D2W bonding with a 2-Step Hybrid Approach is a cost effective, high yield and flexible solution for 3D-IC assembly
- A variety of bonding technologies exist to enable HVM implementation of 3D schemes using D2D or D2W approaches

